

Научно-производственное предприятие «ТЕХНОПРИБОР»

АНАЛИЗАТОР ПРОМЫШЛЕННЫЙ КОМБИНИРОВАННЫЙ «ЛИДЕР» С БЛОКОМ ЛИДЕР-С

Руководство по эксплуатации ЛИД 100.06.00.000 РЭ

Оглавление

1. Описание и работа	4
1.1. Назначение и область применения	4
1.2. Условия эксплуатации	4
1.3. Технические характеристики	
1.4. Состав и основные функции	
1.5. Комплектность	
1.6. Принцип работы	
1.7. Устройство датчика и гидроблока	
1.8.1. Работа с клавиатурой	
1.8.1. Индикация результатов измерений	
1.8.3. Главное меню	
1.8.4. Индикация ошибок	15
1.8.5. Название пробы	16
1.8.6. Системное меню	16
1.8.7. Управление выходным током	17
1.8.8. Настройка шкалы тока	17
1.8.9. Настройка диапазона выходного тока	
1.8.10. Выбор выводимой величины	18
1.8.11. Настройка цифрового выхода	18
1.8.12. Настройка адреса цифрового выхода	19
1.8.13. Сведения о приборе	20
1.8.14. Настройка анализатора	20
1.8.15. Выбор вещества	20
1.8.16. Меню калибровки константы	21
1.8.17. Ввод константы	21
1.8.18. Ввод УЭП	21
1.8.19. Ввод концентрации	22
1.9. Маркировка	22
1.10. Упаковка	
2. Использование по назначению	
2.1. Указания мер безопасности	
2.2. Подготовка к использованию	
2.3. Работа в режиме измерения	
3. Техническое обслуживание	
4. Правила транспортирования и хранения	
5. Утилизация	
7. Сведения о рекламациях	
7. Сведения о рекламациях	2 . 1 25

Приложение 2	28
Приложение 3	
Приложение 4	
Приложение 5	
Приложение 6	
Приложение 7	
Приложение 8	36

Настоящее руководство по эксплуатации (далее РЭ) предназначено для ознакомления с устройством, принципом работы и правилами эксплуатации стационарного промышленного комбинированного анализатора «ЛИДЕР» серий ЛИДЕР-100 и ЛИДЕР-200 с блоком(ами) ЛИДЕР-С (далее «анализатора»).

В изделии допускаются незначительные конструктивные изменения, не отраженные в настоящем документе и не влияющие на технические характеристики и правила эксплуатации.

1. ОПИСАНИЕ И РАБОТА

1.1. Назначение и область применения

Анализатор предназначен для измерений массовой доли (С) веществ в водных растворах, удельной электропроводности УЭП (к) и температуры, а также приведения УЭП к 25 °С воды и водных растворов (далее «пробы») в системах контроля технологических процессов на электростанциях и других производствах.

1.2. Условия эксплуатации

Условия эксплуатации анализатора приведены в таблице 1.

Таблица 1

	т иолици т
Температура окружающего воздуха, °С	от +5 до +50
Относительная влажность воздуха при температуре +35 °C, без	80
конденсации влаги при более низких температурах,%, не более	
Атмосферное давление, кПа	от 84 до 106,7
Амплитуда смещения при синусоидальных вибрациях с	0,35
частотой от 5 до 100 Гц, мм, не более	0,33
Параметры пробы:	
- температура, °С	от 0 до +80
- давление, МПа, не более	2,0
- расход, м/с, не более	2,0

1.3. Технические характеристики

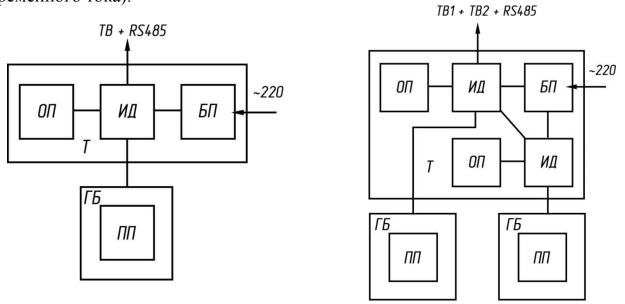
Технические характеристики анализатора приведены в таблице 2.

Таблица 2.

Наименование характеристики	Значение характеристики
Диапазон измерений:	
массовой доли вещества*, %	от 0 до 30
УЭП, мСм/см	от 0,002 до 2000
температуры, °С	от 0 до +150
Пределы допускаемой абсолютной погрешности	
измерений массовой доли вещества, %, в диапазоне от	$\pm 0,008$
0 до 0,2 % включ.	
Пределы допускаемой относительной погрешности	
измерений массовой доли вещества, %, в диапазоне	±4
св. 0,2 до 30 %	

Пределы допускаемой основной абсолютной погрешности измерений УЭП, мСм/см, в диапазоне от	±0,002
0,002 до 0,2 мСм/см включ. Пределы допускаемой основной относительной погрешности измерений УЭП, %, в диапазоне св. 0,2	±1
до 2000 мСм/см	
Пределы допускаемой абсолютной погрешности измерений температуры, °С	±0,3
Пределы допускаемой дополнительной погрешности при изменении температуры анализируемой среды от рабочей $(25,0\pm0,2)$ °C в диапазоне температур от 0 °C до $+80$ °C на каждые 10 °C в долях основной погрешности, не более	1
Пределы допускаемой дополнительной погрешности при изменении температуры окружающей среды от нормальной (20±5) °C в диапазоне температур от +5 °C до +50 °C на каждые 10 °C в долях основной погрешности, не более	0,5
Потребляемая мощность, Вт, не более	
- трансмиттер	7
Параметры электрического питания:	оории ПИПЕР VVO
для трансмиттера с блоком питания 220 В – напряжение переменного тока, В	серии ЛИДЕР-ХХО от 85 до 264
напряжение переменного тока, Бчастота переменного тока, Гц	от 47 до 440
– частота переменного тока, т ц– напряжение постоянного тока, В	от 120 до 370
для трансмиттера с блоком питания 36 В	серии ЛИДЕР-ХХ1
 – напряжение переменного тока, В 	от 15 до 53
напряжение переменного тока, Бчастота переменного тока, Гц	от 49 до 51
– частота переменного тока, т ц– напряжение постоянного тока, В	от 20 до 76
для трансмиттера без блока питания	серии ЛИДЕР-ХХ2
– напряжение постоянного тока, В	от 21,6 до 26,4
Габаритные размеры (ШхГхВ), мм, не более:	от 21,0 до 20,1
- трансмиттер	300x200x300
- датчик С	
- с погружной длиной 150 мм	Ø120x315
- с погружной длиной 250 мм	Ø120x415
- с погружной длиной 500 мм	Ø120x665
- с погружной длиной 1000 мм	Ø120x1165
- с погружной длиной 1500 мм	Ø120x1665
- расширительный модуль**	300x300x300
Масса, кг, не более	
- трансмиттер	5,0
- датчик С	
- с погружной длиной 150 мм	1,8
- с погружной длиной 250 мм	2,0
- с погружной длиной 500 мм	2,4

- с погружной длиной 1000 мм	3,2
- с погружной длиной 1500 мм	3,9
- расширительный модуль	25,0
Полный средний срок службы, лет, не менее	10


^{*} возможны другие диапазоны в зависимости от вещества (см. Приложение 6).

1.4. Состав и основные функции

Анализатор состоит из трансмиттера (Т) и одного или двух блоков. Трансмиттер серии ЛИДЕР-100 имеет один измерительный канал, трансмиттер серии ЛИДЕР-200 — два измерительных канала. К каждому каналу Т подключается один блок соответствующего типа (определяется при заказе).

В состав блока входит интеллектуальный датчик (ИД), гидроблок (ГБ) и первичные преобразователи (ПП).

Структурная схема анализатора серий ЛИДЕР-100 и ЛИДЕР-200 показана на рис. 1. Тип блока питания определяется при заказе (на схеме показан пример для 220 В переменного тока).

Рис.1. Структурные схемы анализаторов серии ЛИДЕР-100 (слева) и ЛИДЕР-200 (справа): Т — трансмиттер; БП — блок питания; ОП — панель оператора; ИД — интеллектуальный датчик; ПП — первичный преобразователь; ГБ — гидроблок; ТВ1, ТВ2 — унифицированные токовые выходы 1-го и 2-го каналов; RS485 — пользовательский интерфейс RS-485/Modbus RTU.

^{**} для монтажа датчика в трубопровод с внутренним диаметром менее 130 мм

Трансмиттер (см. рис. 2) объединяет в своем корпусе один (серия ЛИДЕР-100) или два (серия ЛИДЕР-200) интеллектуальных датчика (кроме ЛИДЕР-С), одну или две панели оператора (ОП) и один блок питания (БП), при этом каждый ИД подключается к отдельной ОП с ЖК-дисплеем и органами управления на пленочной клавиатуре. БП отсутствует в комплектациях анализатора с питанием 24 В постоянного тока.

Полученные результаты измерений выводятся на экран панели оператора и одновременно передаются по выходным интерфейсам:

- унифицированному токовому сигналу в диапазонах 0-20/ 0-5/ 4-20 мА в активном режиме (НАRT-протокол по запросу);
- цифровому каналу с применением интерфейса RS-485 по протоколу обмена Modbus-RTU.

На каждый измерительный канал (ИД) выделяется один токовый выход. Выбор диапазона тока, настройку пределов тока и передаваемых по токовому выходу величин осуществляет пользователь через меню ОП.

По цифровому выходу RS-485 передаются данные, содержащие значения измеренных величин, коды ошибок, параметры датчиков и другую информацию.

Трансмиттер может быть смонтирован на вертикальную поверхность с помощью 4 винтов М5 (настенное исполнение) или в проем согласно Приложениям 7 и 8 (щитовое исполнение). Корпус трансмиттера имеет степень защиты IP65 по ГОСТ 14254-15.

На корпусе трансмиттера располагаются разъемы байонетного типа для подключения питания, выходных сигналов и ПП в соответствии с таблицей 3.

В случае ИД ЛИДЕР-С он располагается в отдельном корпусе и соединен с трансмиттером цифровым кабелем, а с ПП (датчиком С) - через гермоввод несъемным герметичным кабелем в металлорукаве длиной 1,6 м (см. п.1.7).

Таблица 3. Блочные разъемы трансмиттера

Назначение	Маркировка	Тип	Контакты	Кабель
Внешнее питание	~220 B ~36 B 24 B	FQ14-3ZJ	1, 2 = питание 3 = заземление	ПВС 3х0,75
Токовые и цифровой выходы	TB/ TB+RS	FQ14-9ZK	ТВ 1-го канала 1= +, 2= - ТВ 2-го канала 3= +, 4= - RS-485 7= Data+, 8= Data-	КММ 6х0,12 без цифрового выхода; FTP 4х2х24AWG с цифровым выходом
Питание и связь с ИД	ИД	FQ14-5ZK	1= Data+, 2= Data- 3= +24B, 4 = -24B	FTP 2x2x24AWG

Примечание: маркировка разъема питания соответствует установленному согласно заказу БП.

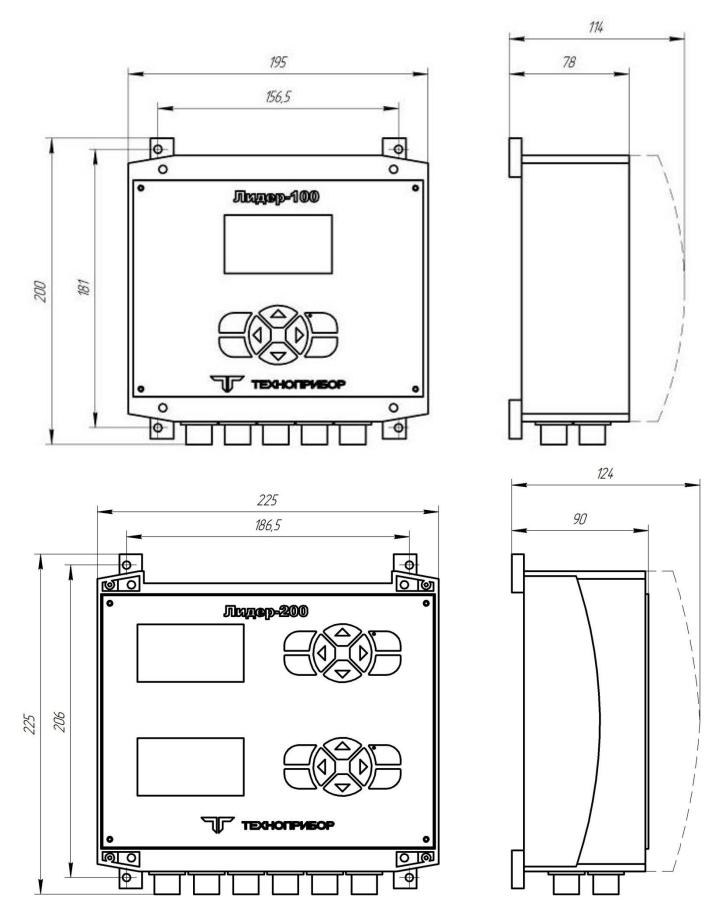


Рис. 2. Габаритно-установочный чертеж трансмиттера серии ЛИДЕР-100 (сверху) и ЛИДЕР-200 (снизу) в настенном исполнении.

ИД состоит из аналоговой и цифровой плат, соединенных через универсальный разъем. Аналоговые платы различаются по типам, соответствующим различным методам измерения, а цифровая плата универсальна и совместима со всеми аналоговыми платами ИД.

ИД определяет наименование измерительного канала анализатора и выполняет следующие функции:

- преобразует аналоговые сигналы ПП в цифровую форму;
- хранит необходимые для вывода конечного результата константы в энергонезависимой памяти;
 - выполняет автокалибровку и цифровую обработку данных;
- производит диагностику работоспособности $\Pi\Pi$ и UД с выдачей кодов неисправностей;
- передает данные с измеренными значениями параметров пробы и кодами ошибок;
 - принимает команды ОП на изменение констант (калибровку каналов).

ПП производит преобразование параметров пробы в аналоговый сигнал, измеряемый ИД.

1.5. Комплектность

Состав комплекта поставки анализатора приведен в таблице 5.

Таблица 5.

Наименование	Обозначение	Кол-	Примечание
		во	
Трансмиттер серии ЛИДЕР-100 или ЛИДЕР-200	ЛИД 455.00.000 ЛИД 456.00.000	1	по заказу
Кабельные разъемы питания и выходных сигналов	см. паспорт	1-4	количество и тип разъемов зависит от комплектации (см. паспорт)
Монтажный комплект трансмиттера - кронштейн в сборе (1 шт.) - винты М5 (4 шт.)	-	1	для щитового исполнения
ИД ЛИДЕР-С	ИД 284.00.00.000	1	
Кабель цифровой 0,4 м	-	1	для связи Т и ИД
Расширительный модуль*	ИРТ 360.02.00.000	1	по заказу
Датчик-С		1	погружная длина по заказу
Заглушка		1	для установки вместо датчика при ТО
Руководство по эксплуатации	ЛИД 100.06.00.000 РЭ	1	
Паспорт	ЛИД 100.06.00.000 ПС	1	
Методика поверки	ЛИД 300.00.00.000 МП	1	

^{*)} Перечень запасных частей в Приложении 5.

1.6. Принцип работы

Принцип работы анализатора основан на измерении электропроводности при помощи переменного тока. Внутри чувствительного элемента индуктивного датчика УЭП находятся два трансформатора с тороидальными ферритовыми сердечниками. Окружающая датчик и заполняющая его осевой канал жидкость образует контур, который является вторичной обмоткой трансформатора возбуждения (ТВ) и первичной обмоткой трансформатора тока (ТТ). Ток жидкостного пропорционален произведению ЭДС, наводимой в нем магнитным полем сердечника ТВ, на УЭП жидкости (см. рис. 3).

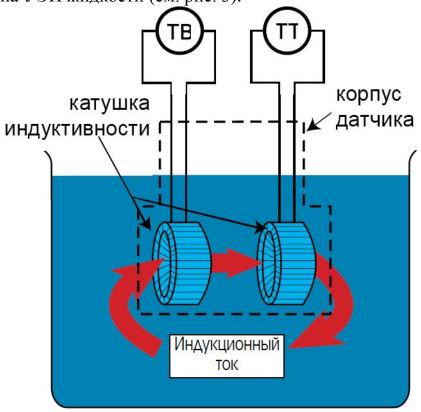


Рис. 3. Принцип работы индуктивного датчика УЭП.

Датчик УЭП характеризуется кондуктометрической константой А [1/см], значение которой хранится в энергонезависимой памяти ИД и периодически уточняется в процессе калибровки. По вычисленному сопротивлению Rk цепи датчика УЭП и значению константы А рассчитываются значения УЭП (к) при фактической температуре:

$$\kappa = A / Rk \tag{1}$$

В корпус датчика УЭП встроен терморезистор типа Pt-1000. По измеренному значению сопротивления термодатчика Rt (канал термометра), и хранящейся в энергонезависимой памяти константе R0 вычисляется температура t:

$$Rt = R0 \times (1 + 3,9083 \times 10^{-3} \times t - 5,775 \times 10^{-7} \times t^{2})$$
(2)

R0 [OM] — сопротивление терморезистора при 0 °C, номинальное значение R0 = 1000 OM.

Калибровка канала термометра производится по одной точке путем ввода значения температуры, измеренной эталонным термометром, при этом рассчитывается и сохраняется новая константа R0.

Таблица 5

t °C	0	20	25	40	60	80	100	125	150
R _t ,O _M	1000,0	1077,9	1097,9	1155,4	1232,4	1309,0	1385,1	1479,5	1573,3

Калибровка канала кондуктометра производится тремя способами:

- вводом известного значения константы А;
- вводом известного значения УЭП (калибровка по образцовому кондуктометру);
- вводом известного значения концентрации хлорида калия (калибровка по эталонному раствору).

В памяти ИД хранятся зависимости УЭП от температуры для различных концентраций однокомпонентных водных растворов следующих веществ: KCl, NaCl, NaOH, H_2SO_4 , HCl, NH_3 , Na_3PO_4 , N_2H_4 . Эта база данных позволяет ИД автоматически осуществлять температурную компенсацию с учетом нелинейностей, характерных для концентрированных растворов.

Оператор выбирает в меню ОП рабочее вещество, для которого ИД осуществляет приведение УЭП к температуре 25 °C и расчет массовой концентрации.

Анализатор непрерывно передает измеренные значения по выходным интерфейсам (при их наличии в данной комплектации).

При штатной работе по токовому выходу передается сигнал постоянного тока согласно линейной зависимости:

$$I = Imin + A \times (Imax - Imin) / (Amax - Amin)$$
 где (3)

Imin – нижний предел выходного тока;

Ітах – верхний предел выходного тока;

A – текущее значение величины, преобразуемой в унифицированный токовый сигнал (выбирается пользователем в меню «настройка шкалы тока»);

Amin – значение величины A, соответствующее значению тока Imin;

Amax – значение величины A, соответствующее значению тока Imax.

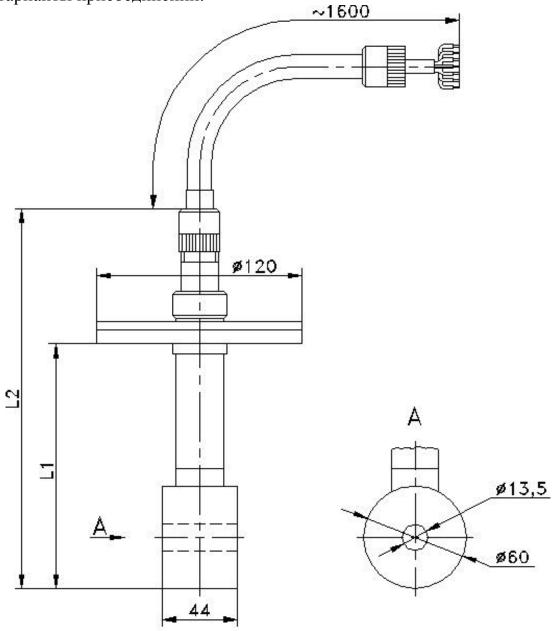
При возникновении нештатных ситуаций, при которых измерение передаваемой по токовому выходу величины невозможно или некорректно, на токовом выходе устанавливается значение, равное нулю.

1.7. Устройство датчика и гидроблока

Чувствительными элементами датчика являются два тороидальных трансформатора и термодатчик, расположенные в металлическом корпусе (см. рис. 4). Корпус закреплен на несущей трубке, которая вварена во фланец, с помощью которого датчик монтируется на месте установки. Контактирующая с раствором поверхность датчика покрыта химически стойкой пластмассой (полипропиленом).

Датчик устанавливается в трубопроводы или баки с помощью фланца (см. Приложение 1, рис.5). При монтаже датчика в трубопроводы с внутренним диаметром менее 130 мм необходим расширительный модуль, исполнение которого определяется требованиями Заказчика. При заказе модуля необходимо указать его полное обозначение MPK-A/D/d, где:

А – обозначение материала модуля:


1 - 12X18H10T;

- $2 C_{T}$. 20;
- 3 полипропилен;
- 4 по заказу.

D – внешний диаметр трубы, мм;

d - внутренний диаметр трубы, мм.

Расширительный модуль имеет фланцевое присоединение, по заказу возможны другие варианты присоединений.

Tun	Разме	оы, мм	Massa vr
Тип	L1	L2	Масса, кг
C-0,15	150	315	1,8
C-0,25	250	415	2,0
C-0,5	500	665	2,35
C-1,0	1000	1165	3,15
C-1,5	1500	1665	3,9

Рис. 4. Габаритный чертеж датчика.

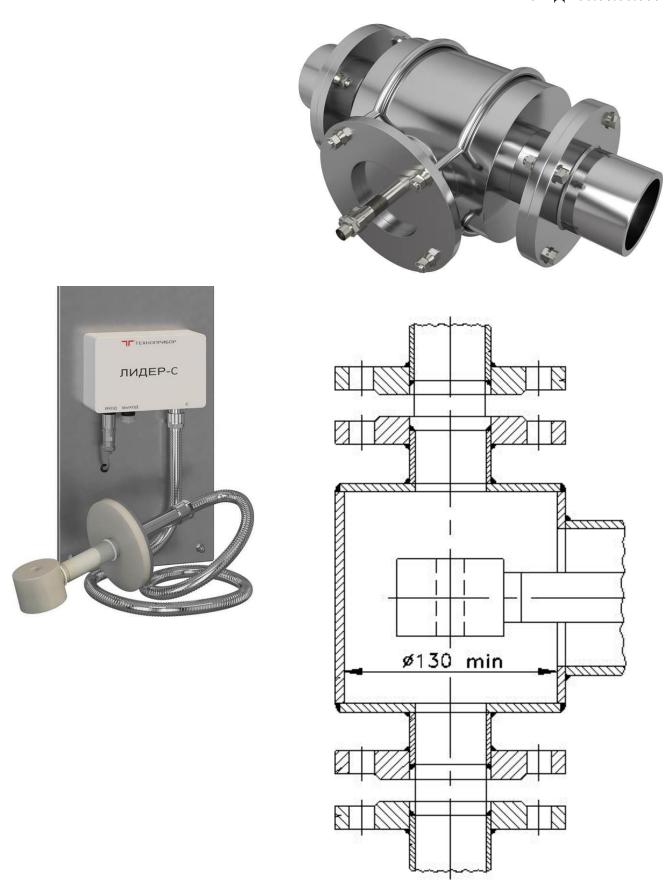


Рис.5. Внешний вид ИД ЛИДЕР-С с датчиком С-0,15 на монтажной панели (слева) и расширительного модуля (справа).

1.8. Пользовательское меню ОП

1.8.1. Работа с клавиатурой

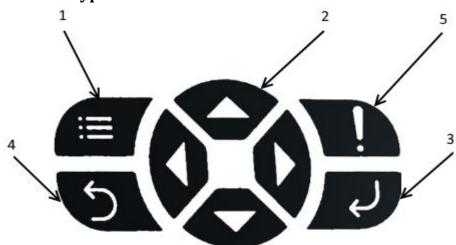


Рис. 6. Клавиатура

1 — Клавишу МЕНЮ; 2 — Клавиши СТРЕЛКИ НАВИГАЦИИ (ВВЕРХ, ВНИЗ, ВЛЕВО, ВПРАВО); 3 — Клавиша ВВОД; 4 — Клавиша НАЗАД; 5 — Клавиша ОШИБКА.

Для навигации и ввода данных при настройке анализатора используется пленочная клавиатура (рис. 6).

Для просмотра текущих ошибок нажмите клавишу ОШИБКА (поз. 5, рис. 6).

Для входа и выхода из меню используется клавиша МЕНЮ (поз. 1, рис. 6).

Для навигации в меню и ввода значений используйте СТРЕЛКИ НАВИГАЦИИ (поз. 2, рис. 6). Для подтверждения ввода и перехода в подраздел меню используйте клавишу ВВОД (поз. 3, рис. 6).

Для отмены ввода, перехода в предыдущее меню или отмены действия используйте клавишу НАЗАД (поз. 4, рис. 6).

1.8.1. Индикация результатов измерений

Рис.7. Основной экран.

После загрузки ОП появляется «Основной экран» (см. рис. 7), центральная часть которого разделена на три области.

В верхней части отображается название пробы (вводится пользователем в меню «название пробы») и наименование измерительного канала.

В средней области выводится результат измерений УЭП, приведенной к 25 °C, (K_{25}) , УЭП при текущей температуре, солесодеражние раствора (C), и концентрация

(С%). Переключение индикации этих величин производится стрелками клавиатуры ВПРАВО и ВЛЕВО (см. рис. 6).

Стрелками клавиатуры ВВЕРХ и ВНИЗ (см. рис. 6) производится переключение между режимом индикации измеряемой величины и ЭДС.

В нижней части выводится результат измерений температуры и название вещества.

Для входа в меню нужно нажать на клавишу МЕНЮ (см. рис. 6).

1.8.3. Главное меню

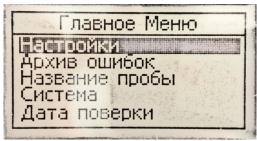


Рис. 8. Экран «Главное меню»

«Главное меню» позволяет перейти в настройки каналов и общие настройки. Нажатие клавиши НАЗАД возвращает к Основному экрану.

Клавиша ВВОД подтверждает переход в подраздел меню.

1.8.4. Индикация ошибок

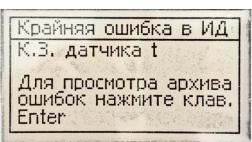


Рис. 9. Экран «Крайняя ошибка в ИД»

Анализатор непрерывно производит самодиагностику и, при обнаружении нештатных ситуаций, об этом сигнализирует световой индикатор на клавише ОШИБКА. В штатном режиме измерений горит зеленый цвет, в режиме калибровки мигает зеленый цвет, а в случае возникновения ошибки загорается красный. Сведения об индикации сообщений приведены в Приложении 2.

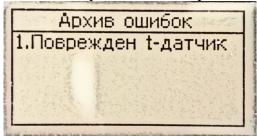


Рис. 10. Экран «Архив ошибок»

Если горит красный индикатор, то для просмотра последней возникшей ошибки можно нажать клавишу ОШИБКА. Чтобы узнать предшествующие ошибки зайдите в «Архив ошибок» с помощью клавиши ВВОД (см. рис. 10).

Архив хранится в энергонезависимой памяти и содержит 30 ячеек, при заполнении всех ячеек производится циклическая перезапись архива. Пролистывание архива производится СТРЕЛКАМИ НАВИГАЦИИ

Повторное нажатие клавишы ОШИБКА возвращает к основному экрану.

1.8.5. Название пробы

Рис. 11. Экран «Название пробы».

Меню «Название пробы» (см. рис. 9) позволяет ввести текст, который будет отображаться в верхней части основного экрана. Выбор символа производится клавишами ВВЕРХ и ВНИЗ, для перехода к следующему/предыдущему символу нажмите клавишу ВПРАВО/ВЛЕВО, смена языка ввода и регистра производится клавишей ОШИБКА. Для того, чтобы ввести пробел после окончания ввода слова, передвиньте курсор на конец слова с помощью клавиши ВПРАВО и нажмите клавишу ВВОД. Для удаления следующего за курсором символа нажмите клавишу ВВОД.

Нажатие клавиши НАЗАД возвращает к экрану «Главное меню» и сохраняет введённое название пробы.

1.8.6. Системное меню

Рис. 12. Экран «Системное меню»

Экран «Системное меню» (см. рис. 12) предназначен для перехода к соответствующим экранам настроек.

Нажатие клавиши НАЗАД возвращает к экрану «Главное меню».

1.8.7. Управление выходным током

Рис. 13. Экран «Управление вых. током»

Экран «Управление вых. током» (см. рис. 13) предназначен для перехода к соответствующим экранам настроек.

Нажатие клавиши НАЗАД возвращает к экрану «Системное меню».

1.8.8. Настройка шкалы тока

Рис. 14. Экраны «Шкала вых-го тока»

Экран «Шкала вых-го тока» (см. рис. 14) предназначен для настройки значений УЭП, соответствующих минимальному и максимальному значениям шкалы токового выхода.

Для сохранения параметров нажмите ВВОД.

Нажатие клавиши НАЗАД возвращает к экрану «Управление вых. током».

1.8.9. Настройка диапазона выходного тока

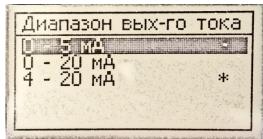


Рис. 15. Экран «Диапазон вых-го тока»

Экран «Диапазон вых-го тока» (см. рис. 15) предназначен для программирования диапазона выходного тока. Выбор диапазона производится клавишами ВНИЗ и ВВЕРХ и клавишей ВВОД.

Нажатие клавиши НАЗАД возвращает к экрану «Управление вых. током».

1.8.10. Выбор выводимой величины

Рис. 16. Экран «Величина на выходе I»

Экран «Величина на выходе I» (см. рис. 16) предназначен для настройки величины, выводимой на токовый выход. Выбор производится клавишами ВНИЗ и ВВЕРХ и клавишей ВВОД.

Нажатие клавиши НАЗАД возвращает к экрану «Управление вых. током»

1.8.11. Настройка цифрового выхода

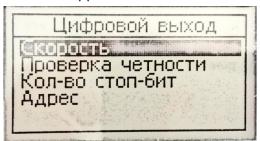


Рис. 17. Экран «Цифровой выход»

Меню «Цифровой выход» (см. рис. 17) предназначено для перехода к соответствующим экранам настроек.

Нажатие клавиши НАЗАД возвращает к экрану «Системное меню».

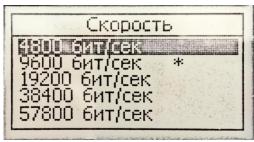


Рис. 18. Экран «Скорость»

Экран «Скорость» (см. рис. 15) предназначен для программирования скорости передачи данных. Передвижение по меню производится клавишами ВНИЗ и ВВЕРХ, выбор – клавишей ВВОД.

Нажатие клавиши НАЗАД возвращает к экрану «Цифровой выход».

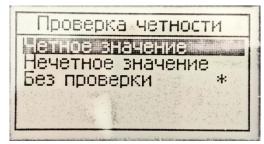


Рис. 19. Экран «Проверка чётности»

Экран «Проверка чётности» (см. рис. 19) предназначен для настройки режима проверки чётности. Передвижение по меню производится клавишами ВНИЗ и ВВЕРХ, выбор – клавишей ВВОД.

Нажатие клавиши НАЗАД возвращает к экрану «Цифровой выход».

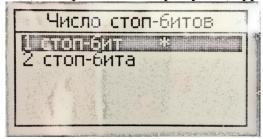


Рис. 20. Экран «Число стоп-битов»

Экран «Число стоп-битов» (см. рис. 20) предназначен для настройки числа стоп-битов. Передвижение по меню производится клавишами ВНИЗ и ВВЕРХ, выбор – клавишей ВВОД.

Нажатие клавиши НАЗАД возвращает к экрану «Цифровой выход».

1.8.12. Настройка адреса цифрового выхода

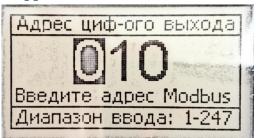


Рис. 21. Экран «Адрес циф-ого выхода»

Экран «Адрес» (см. рис. 21) предназначен для программирования адреса цифрового выхода. Диапазон значений от 1 до 247. Выбор числа производится клавишами ВВЕРХ и ВНИЗ (перебор от «0» до «9»), перемещение по разрядам – клавишами ВПРАВО и ВЛЕВО. Для сохранения введённого числа нажмите клавишу ВВОД.

Нажатие клавиши НАЗАД возвращает к экрану «Цифровой выход».

1.8.13. Сведения о приборе

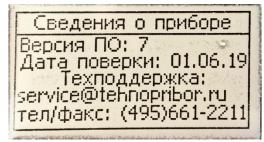


Рис. 22. Экран «Сведения о приборе»

На экране «Сведения о приборе» (см. рис. 22) приводится информация о версии программного обеспечения, дате проведения последней поверки анализатора, а также контакты техподдержки НПП «Техноприбор».

Нажатие клавиши НАЗАД возвращает к экрану «Системное меню».

1.8.14. Настройка анализатора

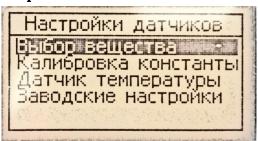


Рис. 23. Экран «Настройка датчиков»

Клавиши «Датчик температуры», «Калибровка рН», «Вольтметр рН» и «Параметры рН» (см. рис. 23) переключают на соответствующие экраны.

Нажатие клавиши НАЗАД возвращает к экрану «Системное меню».

1.8.15. Выбор вещества

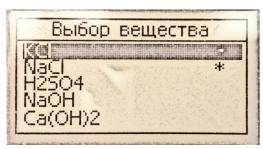


Рис. 24. Экран «Цифровой выход»

Экран «Выбор вещества» (см. рис. 24) позволяет выбрать вещество, в котором будет находиться датчик. Передвижение по меню производится клавишами ВНИЗ и ВВЕРХ, выбор – клавишей ВВОД.

Нажатие клавиши НАЗАД возвращает к экрану «Настройки датчиков».

1.8.16. Меню калибровки константы

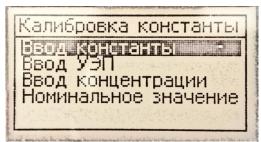


Рис. 25. Экран «Калибровка константы»

Экран «Калибровка константы» (см. рис. 25) предназначен для перехода к соответствующим экранам калибровки и сброса параметров датчика к номинальным. Для сброса к номинальным параметрам нажмите клавишу ВВОД на поле «Номинальное значние»

Нажатие клавиши НАЗАД возвращает к экрану «Настройки датчиков».

1.8.17. Ввод константы

Рис. 26 Экран «Ввод константы»

Экран «Ввод константы» (см. рис. 26) предназначен для калибровки константы датчика. Выбор числа производится клавишами ВВЕРХ и ВНИЗ (перебор от «0» до «9»), перемещение по разрядам – клавишами ВПРАВО и ВЛЕВО. Для сохранения введённого числа нажмите клавишу ВВОД.

В нижней части экрана отображается текущая константа датчика.

Нажатие клавиши НАЗАД возвращает к экрану «Калибровка константы».

1.8.18. Ввод УЭП

Рис. 27. Экран «Ввод УЭП»

Экран «Ввод УЭП» (см. рис. 27) предназначен для калибровки УЭП пробы. Выбор числа производится клавишами ВВЕРХ и ВНИЗ (перебор от «0» до «9»), перемещение по разрядам — клавишами ВПРАВО и ВЛЕВО. Для сохранения введённого числа нажмите клавишу ВВОД.

Слева внизу отображается текущее значение константы датчика, справа – текущая $УЭ\Pi$.

Нажатие клавиши НАЗАД возвращает к экрану «Калибровка константы».

1.8.19. Ввод концентрации

Рис. 28. Экран «Ввод концентрации»

Экран «Ввод концентрации» (см. рис. 28) предназначен для калибровки концентрации раствора. Выбор числа производится клавишами ВВЕРХ и ВНИЗ (перебор от «0» до «9»), перемещение по разрядам — клавишами ВПРАВО и ВЛЕВО. Для сохранения введённого числа нажмите клавишу ВВОД.

Слева внизу отображается текущее значение константы датчика, справа – текущая УЭП.

Нажатие клавиши НАЗАД возвращает к экрану «Калибровка константы».

1.9. Маркировка

- 1.9.1. На левой боковой стенке корпуса Т нанесены:
- зарегистрированный товарный знак предприятия-изготовителя;
- код комплектации анализатора (см. Приложение 3);
- серийный номер и год выпуска;
- питание анализатора.
- 1.9.2. На нижней стенке корпуса Т нанесены:
- обозначения разъемов Т.
- обозначения разъемов ПП.
- 1.9.3. На лицевой стороне корпуса ИД должны быть нанесены:
- зарегистрированный товарный знак предприятия-изготовителя;
- наименование измерительного канала;
- обозначения разъемов ПП.
- 1.9.4. На левой стороне корпуса ИД должны быть нанесены:
- зарегистрированный товарный знак предприятия-изготовителя;
- серийный номер ИД и года выпуска.

1.10. Упаковка

- 1.10.1. Комплект запасных частей и принадлежностей и эксплуатационная документация уложены в пакеты из полиэтиленовой пленки по ГОСТ 10354 толщиной не менее 0,15 мм.
- 1.10.2. Комплект анализатора упакован в транспортную тару ящики типа Π по ГОСТ 5959. Упаковка производится в соответствии с ГОСТ 23170 по категории КУ-2 или КУ-3. После упаковки транспортная тара опломбирована.
- 1.10.3. В каждую упаковочную единицу вложен упаковочный лист установленной формы, обернутый полиэтиленовой пленкой ГОСТ 10354 толщиной не менее 0,15 мм.

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 2.1. Указания мер безопасности
- 2.1.1. Производить монтаж, обслуживание и эксплуатировать анализатор имеют право лица, ознакомившиеся с настоящим руководством по эксплуатации, а также с правилами техники безопасности при эксплуатации электроустановок.
- 2.1.2. Клемма заземления анализатора, расположенная на панели, должна быть соединена с контуром заземления медным проводом сечением $2,5 \text{ мм}^2$.
- 2.1.3. Сопротивление контура заземления в любое время года не должно превышать 4 Ом.
- 2.1.4. Клемма заземления не должна использоваться для закрепления каких-либо проводов.
- 2.1.5. Последовательное включение в заземляющий провод нескольких заземляемых элементов запрещается.

2.2. Подготовка к использованию

- 2.2.1. Датчик монтировать в трубопровод, резервуар или расширительный модуль с помощью фланца (Приложение 1).
- 2.2.2. Трансмиттер монтировать винтами М5, ИД винтами М4 на вертикальной плоскости.
- 2.2.3. Электрическое соединение Т и ИД выполнить входящим в комплект поставки цифровым кабелем, подключив его к разъему «ИД» трансмиттера и к разъему «ВХОД» ИД.
- 2.2.4. Кабели питания и выходных сигналов подключить к соответствующим разъемам Т, при необходимости распаяв кабельные разъемы (входят в комплект поставки) согласно таблице 3.
- 2.2.5. Включить питание анализатора, после загрузки ОП светодиод на клавише «!» («ОШИБКА») должен гореть зеленым (штатная работа). В противном случае, необходимо устранить неисправности (см. Приложение 2).
- 2.2.6. Настроить выходные интерфейсы анализатора (см. пп. 1.8.7-1.8.9, 1.8.11) в соответствии с требованиями системы регистрации и обработки данных.

2.3. Работа в режиме измерения

- 2.3.1. Анализатор работает в автоматическом режиме без вмешательства персонала, за исключением работ по периодическому обслуживанию (см. п.3).
- 2.3.2. При обнаружении неисправности светодиод на передней панели анализатора загорается красным цветом и записывается ошибка в архив ошибок. Перечень нештатных ситуаций и рекомендации по устранению неисправностей приведены в Приложении 2.

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1.Ежегодно производить поверку анализатора согласно ЛИД 300.00.00.000МП.

Перед поверкой производить химическую или механическую очистку (ветошью) поверхности погружной части датчика. При химической очистке можно использовать любые реагенты, к которым устойчив полипропилен.

4. ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

- 4.1. Транспортирование анализатора производится в транспортной таре всеми видами крытых транспортных средств в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта. Вид отправки контейнеры, почтовые посылки, мелкая отправка.
- 4.2. Условия транспортирования и хранения в упаковке в части воздействия климатических факторов должны соответствовать условиям 2 (С) по ГОСТ 15150, но с нижним значением предельной температуры минус 20 °C.
- 4.3. После транспортирования в условиях отрицательных температур выгруженные ящики должны быть выдержаны упакованными в течениие не менее 6 часов в условиях хранения 1 по ГОСТ 15150.
- 4.4. Условия хранения анализаторов после снятия транспортной упаковки должны соответствовать условиям хранения 1 (Л) по ГОСТ 15150. При хранении аналиазатор должен быть прочным к воздействию температуры окружающей среды от +5 до +40 °C и относительной влажности до 80 %.
- 4.5. Срок временной противокоррозионной защиты в указанных условиях транспортирования и хранения 3 года.

5. УТИЛИЗАЦИЯ

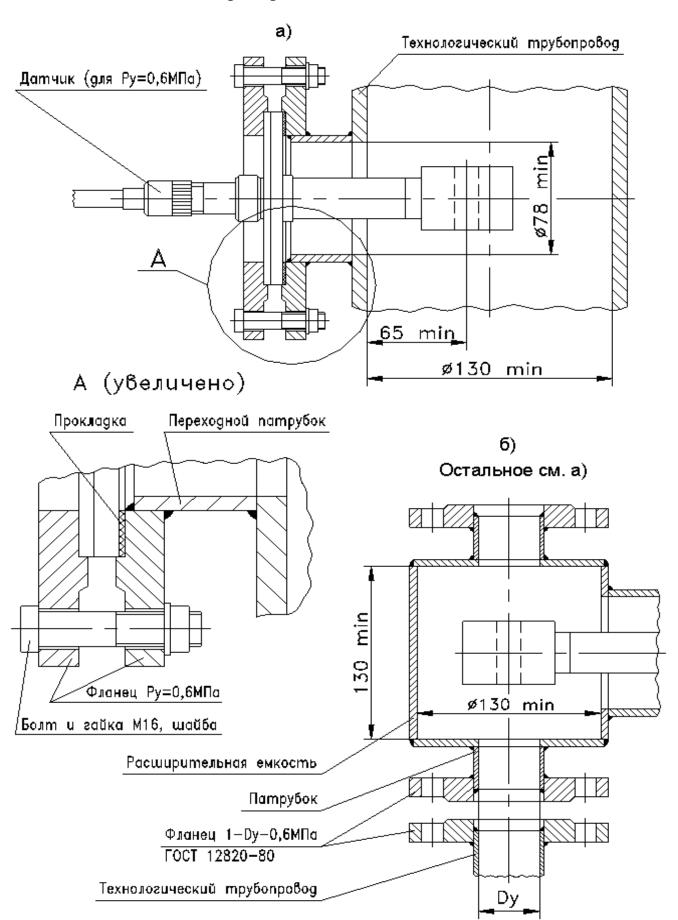
Анализатор экологически безопасен, не содержит радиоактивных, токсичных, пожароопасных и взрывоопасных веществ. Его утилизация не требуется обеспечение особых мер предосторожности.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

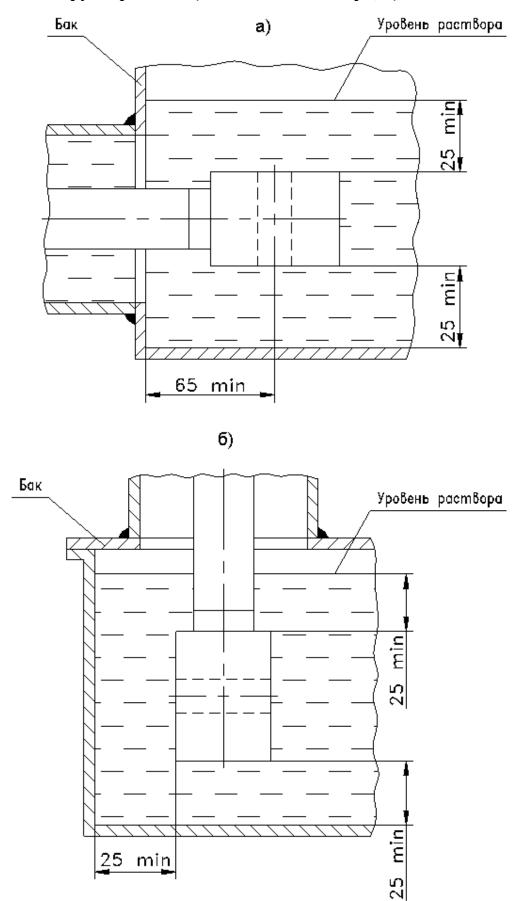
- 6.1. Изготовитель гарантирует соответствие анализатора требованиям ТУ 4215-300-42732639-2016 при соблюдении потребителем условий эксплуатации, транспортирования и хранения, установленных настоящим руководством и сохранности пломбировки предприятия-изготовителя.
- 6.2. Гарантийный срок эксплуатации анализатора устанавливается 24 месяца с момента ввода в эксплуатацию, но не более 36 месяцев со дня поставки. Гарантийный срок эксплуатации электродов соответствует гарантийным обязательствам завода-изготовителя указанного оборудования.
- 6.3. Изготовитель обязан в течение гарантийного срока безвозмездно ремонтировать анализатор, если он за это время выйдет из строя или его характеристики окажутся ниже норм технических требований не по вине потребителя.

7. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

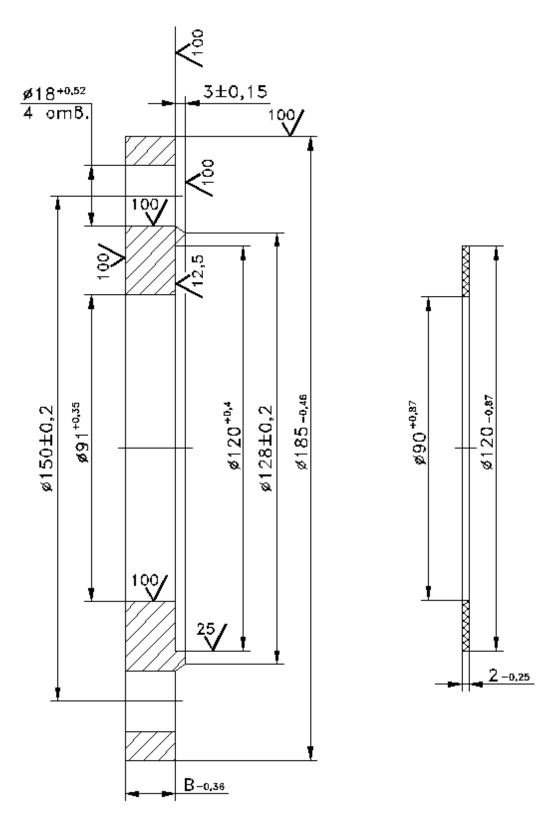
При неисправности анализатора в период гарантийного срока по вине изготовителя, а также после его истечения, неисправный прибор в заводской упаковке с указанием признаков неисправностей и соответствующим актом направляется в адрес предприятия-изготовителя:


111538, Москва, ул. Косинская 7, ООО «НПП «Техноприбор»

www.tehnopribor.ru


Тел./факс: +7(495)-661-22-11 e-mail: info@tehnopribor.ru

Все предъявленные к анализатору рекламации регистрируются.


ПРИЛОЖЕНИЕ 1. Примеры монтажа датчика.

Монтаж в трубопроводе: а) большого диаметра; б) малого диаметра

Монтаж в баке: а) на боковой стенке; б) на крышке

Рабочее давл-е не более, МПа	В, мм	Номинальный размер болтов или шпилек	Для монтажа датчика на
0,6	15		трубопровод или бак
0,06	11	IVIIO	бак

Фланец и прокладка для монтажа датчика

приложение 2.

Возможные неисправности и методы их устранения.

	Оста				
№п/п	Сообщения о неисправностях	Вероятная причина	Метод устранения		
1	Нет связи	Установлен некорректный номер канала Обрыв линии связи Т и ИД	Установить номер канала, соответствующий коду комплектации* Заменить цифровой кабель ИД **		
2	Перегрев ИД	Перегрев ИД вследствие нарушений условий эксплуатации	Отключить питание анализатора, обеспечить условия эксплуатации согласно п.1.2, включить питание анализатора		
3	Сбой датчика	Несоответствие версий ПО ИД и Т	Сообщить специалистам техподдержки версии ПО (см. п.1.8.11)		
		Отказ цифровой платы ИД	Заменить цифровую плату *		
4	Поврежден термодатчик	Короткое замыкание или обрыв в цепи термодатчика	Требуется ремонт/замена		
5	Поврежден датчик УЭП	Поврежден датчик УЭП или неисправен ИД	датчика или ИД*		
6	Обрыв токовой линии	Обрыв цепи выходного тока	Подключить кабель выходных сигналов. Если ошибка осталась, отключить кабель и замкнуть контакты токового выхода (см. табл.3). Если ошибка осталась, обратиться в техподдержку, в противном случае устранить обрыв кабеля или внешних цепей выходного тока		
7	Неверный ввод	Некорректный ввод значений на клавиатуре при калибровке	Ввести правильное значение		
8	Ошибка измерения	Во время калибровки возникла ошибка	Для уточнения ошибки перейти к Основному экрану		

^{*)} Для подробных инструкций просьба обратиться в техподдержку ООО «НПП «Техноприбор»: Тел./факс: +7(495)-661-22-11, e-mail: info@tehnopribor.ru.

^{**)} Перечень запчастей с кодами заказа в Приложении 5.

приложение 3.

Обозначение комплектации анализаторов «ЛИДЕР»

ЛИДЕР-АВС.DDDD.E-F.G-H.I-J

А – обозначение трансмиттера:

- 1 -серия ЛИДЕР-100 (один измерительный канал)
- 2 серия ЛИДЕР-200 (два измерительных канала)
- 3 серия ЛИДЕР-300 (три измерительных канала)

В – исполнение анализатора:

- 0 размещение трансмиттера и блока на одной панели
- 1 раздельное размещение трансмиттера и блока, настенный монтаж трансмиттера
- 2 раздельное размещение трансмиттера и блока, щитовой монтаж трансмиттера

С – параметры электрического питания:

- 0 от 85 до 264 В переменного тока с частотой от 47 до 440 Гц или от 120 до 370 В постоянного тока
- 1 от 15 до 53 В переменного тока с частотой от 49 до 51 Гц или от 20 до 76 В постоянного тока
- 2 от 21,6 до 26,4 В постоянного тока

DDDD - интерфейсы выходных сигналов:

- 1000 цифровой выход RS-485/Modbus
- 0100 цифровой выход Ethernet/Modbus (для ЛИДЕР-300)
- 0010 токовые выходы
- 00H0 токовые выходы с HART-протоколом (для ЛИДЕР-100/200)
- 0001 реле (для ЛИДЕР-300)
- Е наименование 1-го канала трансмиттера / блока
- G наименование 2-го канала трансмиттера / блока
- **I** наименование 3-го канала трансмиттера / блока

E, **G**, **I**:

- 1 кондуктометр/ ЛИДЕР-К
- 2 pH/OBП-метр/ЛИДЕР-pH
- 3 натриймер/ ЛИДЕР-Nа
- 4 кислородомер/ ЛИДЕР-О2
- 5 водородомер/ ЛИДЕР-Н2
- 6 концентратомер/ ЛИДЕР-С
- 7 анализатор примесей / ЛИДЕР-АПК
- 8 анализатор общего органического углерода/ ЛИДЕР-ТОС
- 9 анализатор общей жесткости/ ЛИДЕР-dH

```
если I=7, то E=G=F=1 и H=2 (не указываются) если I=8, то E=G=F=H=1 (не указываются)
```

F, H, J – параметры первичных преобразователей и гидроблоков:

При комплектации без гидроблока и первичных преобразователей (F, H, J) не указываются.

для кондуктометра (ЛИДЕР-К):

- 1 блок датчиков ДК-5, ГБ без Н-колонки
- 2 блок датчиков ДК-5, ГБ с Н-колонкой

- 3 блок датчиков ДК-6, ГБ без Н-колонки
- 4 блок датчиков ДК-7 проточно-погружной с адаптером, погружная длина 120 мм
- 5 блок датчиков ДК-7 проточно-погружной с адаптером, погружная длина на заказ
- 6 блок датчиков ДК-7 проточный, на панели
- 7 блок датчиков ДК-7 проточный, без панели

для рН/ОВП-метра (ЛИДЕР-рН):

- 1 гидроблок для чистой воды
- 2 гидроблок ІР65 для чистой воды
- 3 гидроблок магистральный
- 4 гидроблок погружной
- 5 гидроблок «Циклон»
- 6 гидроблок магистральный шлюзовой

для натриймера (ЛИДЕР-Na):

- 1 гидроблок
- 2 гидроблок IP65
- 3 гидроблок лабораторный (настольный)

для кислородомера (ЛИДЕР-О2):

- 1 гидроблок
- 2 гидроблок ІР65

для водородомера (ЛИДЕР-Н2):

- 1 гидроблок
- 2 гидроблок ІР65

для концентратомера (ЛИДЕР-С):

- 1 погружная часть датчика 150 мм
- 2 погружная часть датчика 250 мм
- 3 погружная часть датчика 500 мм
- 4 погружная часть датчика 1000 мм
- 5 погружная часть датчика 1500 мм
- 6 длина погружной части датчика на заказ

для анализатора общего органического углерода (ЛИДЕР-ТОС):

- 0 без Н-колонки
- 1 с Н-колонкой

для анализатора общей жесткости воды (ЛИДЕР-dH):

- 1 гидроблок ЛИДЕР-dH-A
- 2 гидроблок ЛИДЕР-dH-B

ПРИЛОЖЕНИЕ 4. Перечень расходных материалов.

Наименование	Описание	Кол-во	Код заказа
1,413 мСм/см@25С	Раствор для калибровки КАЦ-037, КАЦ-037Р и КАЦ-037С с ДК-2, ЛИДЕР-К с ДК-5 и ДК-7, ЛИДЕР-С	1 л	63703
12,88 мСм/см@25С	Раствор для калибровки КАЦ-037, КАЦ-037Р и КАЦ-037С с ДК-3, ЛИДЕР-К с ДК-6, ЛИДЕР-С	1 л	63704

ПРИЛОЖЕНИЕ 5. Перечень запчастей.

Наименование	Описание	Код заказа
FQ14-3TJ	Кабельный разъем питания трансмиттера	20055
Трансмиттер	Трансмиттер в комплектации согласно заказу	см. маркировку серий ЛИДЕР
LD.13.1	Плата с блоком питания от 24 до 40 В частотой от 49 до 51 Гц трансмиттера ЛИДЕР-100	20057
LD.12.1	Плата с блоком питания от 95 до 264 В частотой от 49 до 440 Гц трансмиттера ЛИДЕР-100	20058
LD.16.1	Плата с блоком питания от 24 до 40 В частотой от 49 до 51 Гц трансмиттера ЛИДЕР-200	20059
LD.17.1	Плата с блоком питания от 95 до 264 В частотой от 49 до 440 Гц трансмиттера ЛИДЕР-200	20060
Датчик С-0,15	Датчик кондуктометрический индуктивный для Лидер-С с погружной длиной 0,15 м	23201
Датчик С-0,25	Датчик кондуктометрический индуктивный для Лидер-С с погружной длиной 0,25 м	23202
Датчик С-0,5	Датчик кондуктометрический индуктивный для Лидер-С с погружной длиной 0,5 м.	23203
Датчик С-1,0	Датчик кондуктометрический индуктивный для Лидер-С с погружной длиной 1,0 м	23204
Датчик С-1,5	Датчик кондуктометрический индуктивный для Лидер-С с погружной длиной 1,5 м	23205
Расширительный модуль МРК - A/D/d	Гидроблок для монтажа датчика C-0,15 в трубопроводы с внутренним диаметром менее 130 мм	12106
Заглушка	Фланец для установки вместо датчика С при его техническом обслуживании	12107

ПРИЛОЖЕНИЕ 6. Диапазоны измерений массовой доли веществ.

Диапазон измерений массовой доли вещества индивидуален для выбранного вещества согласно таблице 6.1 и определяется монотонной областью зависимости удельной электропроводности от концентрации.

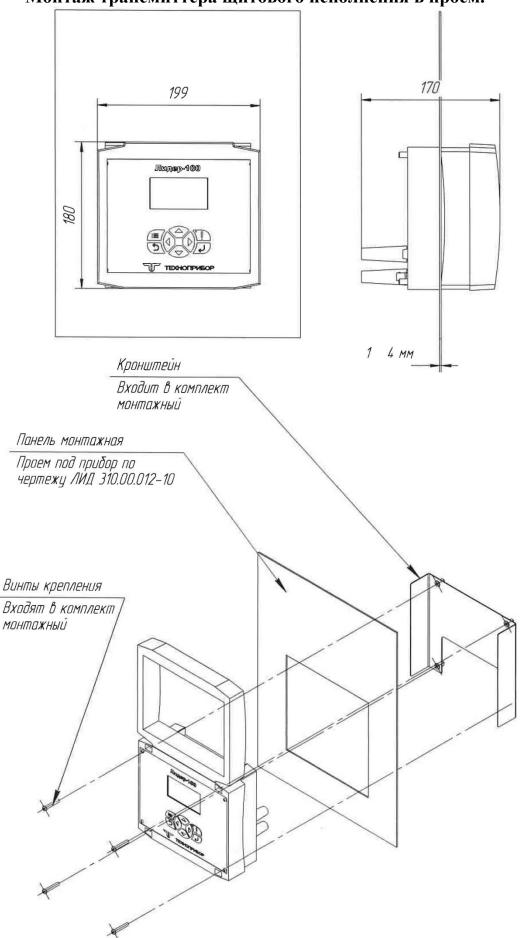
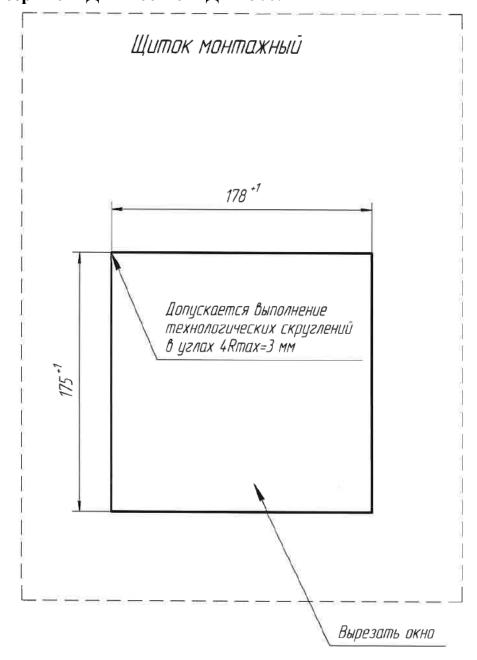

По заказу, набор веществ может быть расширен и добавлены новые поддиапазоны измерений.

Таблица 6.1

Вещество (химическая формула)	Диапазон измерения, %
KCl	0-25
NaCl	0-25
NaOH	0-15
КОН	0-30
$\mathrm{H_2SO_4}$	0-30
HC1	0-20
Na_2SO_4	0-15
NaHCO ₃	0-15
HNO_3	0-30
Na ₃ PO ₄	0-10
NH ₃	0-5
N_2H_4	0-5
FeSO4	0-20
Ca(OH)2	0-0,1
В соответствии с заказом	По согласованию с изготовителем


приложение 7.

Монтаж трансмиттера щитового исполнения в проем.

приложение 8.

ЛИД 310.00.012-10. Чертеж проема для монтажа трансмиттера щитового исполнения серий ЛИДЕР-100 и ЛИДЕР-300.

